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Abstract
Domain-Specific languages have been used in databases since the 70s. Weakly-typed DSLs, such as SQL,

are now joined by strongly-typed Object-Relational Mappers. There is anecdotal evidence that the use of
such DSLs results in increased cognitive complexity compared to SQL, leading to tradeoffs between query
correctness and productivity.

These claims are quantified, compares traditional database management systems to ORMs, and provides
objective supporting evidence for the experience that ORMs have higher friction. Alternative metrics are
developed for evaluating new aspects of queries.

Four widely-used, modern databases and ORMs are examined: SQLite, MongoDB, Entity Framework, and
Core Data. A demo schema and queries with varying levels of sophistication are designed, representing typical
business applications with diverse requirements. Complexity metrics are applied to each system and query.
New metrics specific to query languages are designed and evaluated.

Query complexity is observed to be higher in ORMs than it is in traditional databases, increasing suddenly
when queries not explicitly supported by the ORM are formulated. Complexity of SQL and MongoDB queries
instead scales gradually with requirements, staying below that of ORM-based queries. Two new metrics, token
entropy and weighted AST node count, reproduce perceived levels of cognitive complexity better than some
existing measures.

1 INTRODUCTION
Maintainable, simple, and computationally efficient abstraction of databases remains an ongoing
challenge. While the relational model still dominates the world of database administration, and
non-relational, NoSQL systems are gaining traction as well, the proverbial impedance mismatch
persists between often weakly-typed or schemaless databases and the desire for strongly-typed
domain modelling approaches at the application level.
Several Object-Relational Mapping (ORM), Object-Database Mapping (ODM), and Data Mapper
tools have been (and are being) developed in the industry. Most of these tools focus on the most
trivial use cases, the so-called CRUD scenario (Create-Read-Update-Delete).While ORMs and similar
software make it easier for developers to lift business problems from the level of raw, dynamically-
typed database access libraries into the statically-typed application domain model, they can also
feel limiting in the eyes of experienced programmers, while being potentially inefficient at the
same time, in terms of the database access code (e.g. SQL) they generate. Accordingly, ORMs have

Authors’ addresses: Árpád Goretity, PPCU FITB, Budapest, Hungary, goretity.arpad@itk.ppke.hu; István Reguly, PPCU
FITB, Budapest, Hungary, reguly.istvan@itk.ppke.hu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1046-8188/2021/7-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2021.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Árpád Goretity and István Reguly

continuously been in the focus of criticism, even having been called “The Vietnam of Computer
Science” [1].
Data mapping and abstraction tools have a well-defined, narrow purpose, and as such, the raising
interest in Domain-Specific Languages (DSLs) [2] shows itself in this context. Most such tools
come with their own DSL, which is the primary means of interacting with the data model being
abstracted over. However, this approach is not free from downsides: even moderately complex
queries might require workarounds, or be impossible to write altogether, using an ORM layer.
Reasons may be manifold: insufficient support for the required subset of SQL in the DSL; a desire to
avoid code generation by embedding the DSL into the host language, which, however, is incapable
of expressing all desired queries; or the tendency of ORMs to restrict the subset of features to
a lowest common denominator, provided by all supported databases, with the goal of ensuring
portability.
In this study, we examine two popular, production-ready database engines and two widely-used
ORMs in order to quantitatively compare the complexity of a diverse set of typical queries, as well
as the cognitive load they impose upon programmers. First, we define a schema and corresponding
queries of varying levels of complexity, which work together to simulate the domain and data
model for an imagined business use case. We then realize this model and the queries using each of
the four software packages, using them as idiomatically as possible. Finally, we apply complexity
metrics as defined in the literature to the code written for each piece of software, and we introduce
our own metrics too, keeping the universal properties of query languages in mind.
Based on the obtained quantitative complexity values, we enumerate the most significant missing
features and design weaknesses of each system, and explain them based on the definition and
behavior of each metric. We then contrast the advantages and drawbacks of database management
systems with those of ORMs, which in turn opens up the possibility for present and future authors
of such systems to improve their APIs.
While computational complexity, time and space efficiency, and resource usage are paramount
for the effective real-life use of database systems, they are not in scope for the present paper.
Improving the execution time and memory usage of ORM-generated queries is also a topic of
ongoing research, and may be considered by the authors in the future, although ease of use of
high-level data abstraction systems is often at tension with the performance of data access.

2 METHODS
2.1 Databases and Data Abstraction Tools

Table 1. Databases and database abstraction layers.

Database or Framework Version Host Language Version

SQLite 3 Python 3.9

MongoDB 4.4. Python 3.9

Entity Framework Core 5.0 C# 9.0

Core Data macOS 11.1 Swift 5.3
CoreStore 7.3.1

The exact version of the technologies and programming languages considered is listed in Table 1.
The reasons for choosing each individual database, framework, and language are elaborated below.
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Query Complexity in Modern Database DSLs 3

• SQLite [3] is a fully-featured relational database engine, widely used in embedded systems
and as an application file format. It is among the most deployed databases in the world. Its
approach to data storage is unique in that it works off a single regular file, and it can be
linked against directly as a library, so it doesn’t require setting up a separate DB server
process. Consequently, it is very easy to use. The Python programming language has built-in
support for SQLite.

• MongoDB [4] is one of the most well-known production-ready NoSQL databases. It is
a document store, so its type system is richer than that of key-value stores. It is used
extensively in the development of modern web applications, notably within the Node.JS
community. Since it is inherently schemaless and dynamically typed, and it stores documents
in BSON (a superset of the popular JSON data exchange format), using it from within Python
is only natural.

• Entity Framework Core [5] is Microsoft’s latest attempt at creating a mature, feature-
complete object-relational mapper above various database management systems. It is de-
signed primarily with the C# programming language in mind. It is also popular among
web developers who prefer the .NET platform. The popular programming Q&A site, Stack
Overflow, uses EF Core (among others).

• Core Data [6] is Apple’s official object graph manager for macOS, iOS and other platforms
in the Apple ecosystem. It supports persisting objects into an SQLite database, although
it is described as “not an ORM” by its advocates. CoreStore [7] is a 3rd-party framework
that builds upon Core Data, adding type safety capabilities by building upon features of the
Swift programming language. Including an Apple-only framework is deemed valuable by
the authors, as the company has a record of offering a unique point of view on software
engineering. Furthermore, Swift is a strongly-typed language that incorporates many recent
advancements in language design, being influenced by other type-centric languages such
as Haskell and Rust.

2.2 The Example Schema
The example schema is designed in such a way that it makes it possible to ask different business
questions about it. This results in a spectrum of queries, ranging from trivial to deeply nested ones.
It also attempts to be realistic, by describing the domain model of an imaginary company that deals
in lending and subletting real estate. This is a plausible scenario, as there are already several such
corporations on the market.
The conceptual model of the schema is given in figure 1. Its main components are users, real estate,
and bookings that connect users with real estate. In addition, login information for users is stored
in the form of profiles, which represent the username and password or the 3rd-party service they
authenticated with. Furthermore, sessions describe the intervals between logging in and out. Real
estate are organized into a hierarchy of regions, each of which have a number of (latitude, longitude)
pairs, specifying its boundary as a polygon.
We note that schema design, extraction of schema from example data, and schema mapping is a
complex question and a separate field in itself. Wei and Link [8] derive a principled framework
for schema design for relational databases, targeting generalizations of the normal forms 3NF
and BCNF (when feasible). While we consider schema design to be of paramount importance, in
this work we explicitly only target the complexity of queries and the difficulties regarding simple,
effective, and usable formulation of realistically complex queries. We do not assess the complexity
of schemata or the issues around efficient schema design. We also contrast the relational world with
other technologies in order to provide a broader overview of the state of the art, and to thereby
prove that improvement in data access and abstraction technologies is needed.
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User

id: int64

username: String

real_name: String

real_name: ?String

birth_date: ?Date

Session

id: int64

Profile

id: int64

AuthEvent

public_key: Blob

date: Date

Login Logout

InternalProfile

password_salt: Blob

password_hash: Blob

GoogleProfile

account_id: String

email: ?String

image_url: ?String

FacebookProfile

account_id: String

RealEstate

id: int64

kind: RealEstateKind

Owner

Booking

id: int64

start_date: Date

end_date: Date

price: DecimalNumber

Region

id: int64

Parent/Children

Location

id: int64

latitude: float64

longitude: float64

Boundary

Location

Fig. 1. E-R diagram for the example schema.

2.3 ExampleQueries
Each of the 11 queries exhibits a different level of complexity, and poses various kinds of challenges
for database management systems. The queries try to exercise a reasonably wide spectrum of
common DML features by asking questions that require a variety of techniques in order to be
solved. The main goals of each query are elaborated below. For referencing the queries more
concisely in subsequent sections, each query is given an ordinal number, based on their rank as
reported by a specific complexity metric (token count) of the corresponding SQL implementation.
This combination of metric and language is chosen as the baseline and the reference for all further
comparisons, because SQL is the most widespread database query language, and code length is the
simplest metric, one that most others are expected to outperform.

All implementations of the example schema, queries, and the code conducting the measurements
are fully available on GitHub, at https://github.com/H2CO3/database_dsl_complexity

(1) continents is a very simple smoke test. It requests a list of all continents, i.e. regions with
no parent region (continents are considered the top-level regions), ordered by their unique
ID. It thus exercises simple selection/restriction and sorting features of the DBMS.

(2) multi_profile_users asks for the unique ID of users who possess more than one profile,
which in turn requires grouping and aggregation, as well as filtering out groups based on
an aggregated value. In the SQL implementation, this is realized by the HAVING clause.

(3) no_login_users asks for the ID of all users who never logged in, i.e. those with no associ-
ated Session entities at all. This requires traversing the User ⇐⇒ Session connection,
either by means of a subquery, an explicit, LEFT JOIN-like operation, or by abstracting
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Query Complexity in Modern Database DSLs 5

away such an operation by means of a collection-typed sessions attribute on the User
entity.

(4) owned_real_estate_region_count is still all about grouping and aggregation, however,
it focuses on aggregation over distinct values in a group. Concretely, it returns the number
of regions in which a user owns at least one piece of real estate, for each user.

(5) num_valid_sessions asks for the number of “valid” sessions of a user, i.e. the count of
associated Session entities logged in but not yet logged out. This uses the grouping and
groupwise aggregation capabilities of the DBMS as well, however, it is simpler than the
other aggregation-centric queries, so it is also useful as a basis for comparison against other
aggregation queries.

(6) profile_counts_by_non_google_user assesses the ability of the DBMS to deal with al-
gebraic sum types or subtyping, by querying the count of specific variants (or subclasses,
respectively) of instances of the Profile entity for each user. Specifically, it counts the
number of Google, Facebook, and “internal” (username and password) profiles, and outputs
counts of the latter two for users without any Google profiles. This requires the ability
to perform pattern matching on a given variant of a profile (when using a sum type to
represent it), or referring to a concrete subclass thereof (when using subtyping), as well as
using it as the operand of aggregation and restriction operators.

(7) top_n_booked_regions_for_user_x asks the following question: for this given user, which
are the most booked regions, i.e., in which regions do most of their booked real estate reside?
This tests the DBMS’ ability to traverse multiple connections, to sort on multiple attributes,
and to limit the size of the result set.

(8) northest_booked_latitude_slow realizes a naïve (simple but inefficient) query for re-
trieving the northernmost point across all points of all regions in which a user has bookings,
for each user. Therefore, it tests aggregation over multiple connections. Furthermore, the
part of the data set containing coordinates for region boundaries is sized realistically (it
contains more than 370 000 points), so unlike the other queries, this one is expected to run
in a perceptible amount of time (taking a couple of seconds), unless it is specifically written
with query performance in mind. Although the present work is not concerned with query
optimization by itself, it is still useful and necessary to consider this question, because query
optimization is needed in practice, and the fact that performance improvements often make
queries more complex (as shown quantitatively in [9]) makes this problem directly relevant
to our investigation.

(9) siblings_and_parents starts with a small, leaf region in the hierarchy of regions. It then
checks the parent of said region, and obtains all siblings (i.e. all subregions with the same
parent). It then recurses, repeating the same process one level higher in the tree, until root
regions, i.e. continents, are reached. Such traversal of an arbitrarily-deep forest structure
requires either first-class support for recursion, or an explicit language feature for graph
traversal in order for the query to be simple (and efficient).

(10) northest_booked_latitude_fast is equivalent with its “slow” counterpart, except that
it pre-computes some of the results, namely, it calculates the northernmost point of each
region ahead of time, resulting in significantly faster execution. Accordingly, it demonstrates
that a somewhat longer and more involved query can substantially improve performance,
and thus, sometimes it is justified to make queries more complex. It also requires language
support for declaring named bindings, so that the pre-computed partial results can be reused
and referred to several times in the rest of the query.

(11) avg_daily_price_by_user_by_booking_length_category is probably the most compli-
cated query. Conceptually, it is arranged in a number of stages. First, it computes the length
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6 Árpád Goretity and István Reguly

of each booking by subtracting its end date from its start date. It then classifies the bookings
in five categories, based on their duration in days, such as “days” (shorter than a week),
“weeks” (lasting at least a week but shorter than a month), etc. Next, for each user and each
possible category, it computes the average price over all bookings, by dividing the total price
of the bookings by the sum of their duration. Finally, it sorts the results lexicographically,
based on the username and the textual description of the booking category. Consequently, it
requires the ability to generate Cartesian products of sets, as well as multi-way conditional
branching. Another detail to consider is that the resulting query will be more elegant if the
data manipulation language allows the creation of inline literal sets, without the need for
declaring a permant table or collection upfront.

2.4 Metrics of Complexity
For measuring the complexity of queries, proven metrics from the literature were considered. The
first such measure was Cyclomatic Complexity [10]. However, it was deemed inappropriate and
was subsequently ruled out, as database query languages are primarily declarative and set-based
(or at least loosely collection-based), with little to no facilities for describing explicit control flow.
Next, we considered the metrics introduced by Halstead in [11]. These only depend on a general
notion of “operators” and “operands”, and as such, they are resonably language-agnostic. They are
also suitable for assessing complexity in languages without control flow instructions, furthermore,
like McCabe’s cyclomatic complexity, they are widely used throughout academia and industry.
Therefore they are useful to compare to newly-introduced metrics. The concrete quantities are
derived from four simple measurements:

𝑁1 = the total number of operators
𝜂1 = the number of distinct operators
𝑁2 = the total number of operands
𝜂2 = the number of distinct operands

from which the named metrics are computed as follows:
Vocabulary, 𝜂 = 𝜂1 + 𝜂2
Length, 𝑁 = 𝑁1 + 𝑁2
Estimated length, 𝑁̂ = 𝜂1 𝑙𝑜𝑔2 𝜂1 + 𝜂2 𝑙𝑜𝑔2 𝜂2
Volume, 𝑉 = 𝑁 · 𝑙𝑜𝑔2 (𝜂)
Difficulty, 𝐷 = 𝜂1

2 · 𝑁2
𝜂2

Effort, 𝐸 = 𝐷 ·𝑉
Halstead metrics represent a widely-known and frequently-used standard in measuring software
complexity, and their performance has been evaluated and proven by several studies, such as [12].
Existing research shows that they are applicable even in the context of functional-declarative
languages [13] [14], and in particular, to SQL [15].
Yet another class of metrics we used is a set of trivial code size indexes, namely, the number of tokens
in the source code (after lexing), denoted “# Tokens”, and the number of nodes in the corresponding
Abstract Syntax Tree (after parsing), denoted “# Nodes”. We investigated these because they are
very easy to compute and they might provide interesting data in how they compare to other, more
advanced metrics. They are also language-agnostic, which is an important quality when applied in
a multi-lingual setting.
Finally, we introduced two of our own metrics. This was done because database complexity metrics
introduced in eariler studies either considered the schema only, without evaluating queries [16],
or they focused on a small number of very specific kinds of language features (such as UNION and
JOIN), instead of providing a holistic view of query languages [17].
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Query Complexity in Modern Database DSLs 7

Our first contribution is Shannon entropy computed over tokens. It therefore quantifies the diversity
of atomic symbols in the source text. Entropy is an information-theoretical quantity, which, when
applied to a string over some alphabet, informally describes the inherent unpredictability of that
string. More complicated, harder-to-understand queries are therefore expected to have higher
entropy than simpler ones. It is computed using the following, widely known formula: [18]

𝑆 = −
𝑘∑︁
𝑖=1

𝑝𝑖 𝑙𝑛 𝑝𝑖

where the probability 𝑝𝑖 is defined as the relative frequency of token kind 𝑖 , i.e.:

𝑝𝑖 =
𝑛𝑖∑𝑘
𝑗=1 𝑛 𝑗

if there are 𝑘 distinct tokens and the number of occurrences of token kind 𝑖 is 𝑛𝑖 .
So the string in our case is the list of tokens as opposed to the raw list of characters, since
individual characters do not have any intrinsic meaning. For instance, a keyword or a string literal
composed of many characters is conceptually not any more complicated than one that consists of a
single character. Furthermore, proper tokenization allowed us to ignore whitespace and comments,
which is important since these tokens do not constitute actual, executable instructions and do not
contribute to the perceived complexity of the code.
The second metric we created is the number of AST nodes, weighted by the cognitive overhead of
each node, mathematically:

𝑊 =

𝑘∑︁
𝑖=1

𝑤𝑖

where 𝑤𝑖 is the weight of node 𝑖 . AST nodes representing trivial concepts such as literal values
are assigned unit weight, and other nodes that describe more advanced operations are assigned
increasingly higherweights.Weights are chosen using the following algorithm. Keywords, operators,
and other tokens representing different concepts of SQL are clustered based on the frequency with
which they occur in a representative subset of “favorite” queries from the Stack Exchange Data
Explorer [19]. The sequence of clusters is sorted by decreasing order of frequency, and concepts or
AST nodes corresponding to cluster number 𝑖 = 0, 1, . . . are then assigned a weight of 𝐹𝑖 , the 𝑖-th
Fibonacci number. Fibonacci numbers are defined to start with 1 and 2 so as to ensure that clusters
have strictly increasing weights.
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8 Árpád Goretity and István Reguly

Table 2. Frequency and weighting of a subset of T-SQL tokens in the Stack Exchange Data Explorer “Favorites”
corpus, and the frequency of the corresponding SQLite constructs in our demo queries. The last column
designates the specific queries in which each such token appears, using the indices under which they appear
in Section 2.3.

Token/Construct Frequency in SEDE Weight Frequency in Demo Appears In Queries #

Identifier 306606 1 212 All
Numeric Literal 71803 1 7 2, 6, 11
String Literal 57378 1 10 11
AS 34130 1 25 All except 1
= 31200 2 21 All except 1, 2
SELECT 18695 2 16 All
FROM 17322 2 16 All
AND 16687 2 2 5, 11
THEN 14667 2 5 11
WHEN 14667 2 5 11
WHERE 11826 2 4 1, 3, 7, 9
COUNT 8722 2 6 2, 4, 6, 7
JOIN 8536 2 18 All except 1, 2
* 7843 2 4 1, 9
DESC 5820 2 2 7, 9
GROUP 4867 2 9 All except 1, 3, 9
OR 4793 2 1 9
INNER 4327 2 6 8, 9, 10
SUM 4220 2 3 5, 11
CASE 3918 2 1 11
IS 3660 2 5 1, 3, 5, 9
> 3588 2 1 2
NOT 3320 2 1 5
- 3264 2 6 11
UNION 2846 2 1 9
/ 2736 2 1 11
TOP/LIMIT 2593 2 1 7
MAX 2283 2 3 8, 10
>= 2064 3 5 11
LEFT 1452 3 11 All except 1, 2, 7, 9
WITH 1400 3 3 9, 10, 11
HAVING 586 3 2 2, 6
VALUES 565 3 1 11
FETCH/LIMIT 479 3 1 7
CROSS 164 5 1 11
Recursion 8 8 1 9
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Clustering is based on 1-D Gaussian Kernel Density Estimation in log-frequency space, and it was
carried out using the SciPy stack [20]. Figure 2 shows the observed log-frequencies as a rug plot, as
well as the estimated probability density function, the resulting clusters, and their assigned weight.
Table 2 shows the frequency and weight of each T-SQL token of which the approximate equivalent
SQLite construct appeared at least one in the example queries, along with the equivalent construct
itself, and its total occurrences in the example queries.

Fig. 2. Estimated probability density of T-SQL token frequency distribution, the corresponding clusters, and
the assigned weights.

This scoring scheme is appropriate because Fibonacci numbers grow approximately exponentially,
and humans tend to perceive ratios rather than absolute differences, so it would make little sense
to assign relatively big weights which are close to each other. This line of reasoning stems from the
estimation methodology of the agile approach to software development.
For query languages other than SQL, a mapping is defined between the features of SQL and those of
the language being evaluated, and equivalent or approximately equivalent features of that language
are assigned the same weight as that of the respective SQL constructs, ensuring that the results are
comparable across different languages. This is reasonable because SQL is basically the only database
query language for which it is feasible to find reasonably large, representative, and freely accessible
corpora of queries. Furthermore, most working programmers are already familiar with SQL (and
only with SQL), so they try to formulate queries for other systems based on their SQL knowledge –
even if this is not the cleanest, optimally efficient, or otherwise most favorable approach.
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In addition, some degree of mapping is necessary in any case, due to the variation between dialects
of SQL. In particular, as already mentioned, the Stack Exchange Data Explorer corpus is written
in T-SQL, the dialect for Microsoft’s SQL Server, meanwhile our example queries are written in
SQLite. These two systems do not use exactly the same syntax, especially when describing advanced
language features. There are also keywords which do not uniquely identify an operation or language
feature per se, e.g. the IS, NOT, and NULL keywords can be part of any of the expressions IS NULL,
IS NOT NULL, and NULL. These highly ambiguous keywords have been filtered out and were not
analyzed further, which is not a problem because they often correspond to trivial, atomic operations,
thus they have little impact on qualitative results and consequences drawn from the measurements.

2.5 Automating Complexity Measurements
In order to make the computation of metrics feasible and objective, we have written software for
each of the four languages that parses the corresponding sets of queries and computes all metrics.
Where possible, we relied on existing, state-of-the-art libraries and packages for parsing source
code. The following dependencies and techniques were used for each language:

• SQL: the sqlparser [21] library, written in the Rust programming language, was used
for tokenizing and parsing the queries. The resulting token stream and AST nodes were
postprocessed, normalized, and filtered to include only the relevant items (e.g. whitespace
tokens were discarded), then the AST was traversed using a hand-written visitor pattern,
and metrics were accumulated simply based on the definitions given above.

• MongoDB: since MongoDB queries are already specified in a structured format, no parsing
was necessary in the classical sense. Lexical analysis of JSON is trivial, so it was performed
using regular expressions in the host programming language, Python 3.9. Our own code
then performed the postprocessing and counting similarly to the SQL case, except that a
simple recursive, depth-first traversal was used, because Python being dynamically typed,
there was no need for implementing a visitor.

• C# / EF Core: Roslyn [22] is a reusable implementation of the official C# compiler suite. It
was used for parsing the module containing the target queries. There was no need for a
separate lexing pass, because the resulting AST exposes individual tokens if so requested.
Visitors based on Roslyn’s built-in AST traversal facilities were implemented, which per-
formed filtering of the tokens and the AST nodes, as well as the accumulation of token and
node counts.

• Swift / Core Data / CoreStore: Libsyntax, the parsing and AST manipulation part of the
official Swift compiler was used. The library was used with SwiftSyntax [23], the official
but experimental Swift bindings to the low-level API, which is itself written in C and C++.
The architecture is similar to that of the C# variant.

All of the code for parsing queries and computing metrics is available in the same Git repository
along with the queries themselves.

2.6 Classification ofQuery Languages
Apart from the empirically representative nature of these languages, it is important to consider
them as DSLs and therefore predict in a broader sense what advantages and downsides they bring
to the table. For this kind of qualitative analysis, we use the classification introduced by Gibbons
and Wu [24] and also cited by Alexandrov et al [25] for the classification of their newly-developed
DSL. Based on this, the following observations can be made:

• SQL is a so-called external DSL. It comes with advantages such as complete design and
implementation flexibility in terms of syntax, typing, and semantics, or strong coupling with
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the underlying database, which results in better suitability for the problems being solved.
Drawback include a lack of connection with the programming language and environment
used for application development, which leads to a necessarily dyamically-typed application
programming interface and a consequent lack of many compile-time correctness guarantees
of queries.

• MongoDB is also an external DSL, with basically the same positive and negative properties
of SQL, with the addition of some (relatively minor) differences attributed to its more
uniform but repetitive syntax inherited from the JSON markup language.

• LINQ is an SQL-like construct embedded inside C# (among others). It is a so-called deep
embedding, because LINQ expressions are abstract syntax trees which are separately JIT-
compiled to SQL in Entity Framework. This means that the Entity SQL code generator has a
chance to analyze, typecheck, and optimize the expression structure, however, this imposes
a significant amount of work upon the implementors, and comes with a certain runtime
overhead as well. When classified according to another dimension of Gibbons and Wu’s
system, LINQ can be considered a quote-delimited language, synce LINQ expressions have
their own, distinguised syntax within C#, the host language.

• Core Data and CoreStore also use DSLs, embedded into Swift. In their case, the embedding
is type-delimited and shallow, since Core Data employs a query and expression language
based on dynamic string formatting, and its classes directly perform data manipulation and
retrieval, while CoreStore provides strongly-typed query objects in some cases, but they
directly translate to the dynamically-typed facilities of Core Data.

In the view of the authors of this work, an ideal new query language would need to be a deep
embedded DSL with a quote-delimited high-level layer on top of a type-delimited low-level layer.
These would result in several desirable properties:

• Embedding the DSL into the host language is pretty much necessary for achieving strong
typing, since a generic serialization or marshalling layer needed for communication between
an external database language and the general-purpose application development language
would necessarily introduce dynamic typing.

• A deep embedding is preferred to a shallow one, because translating the constructs of the
DSL query (written in expressions typed with types of the host language) to constructs
accepted by the underlying database engine is a highly non-trivial task. Therefore, non-local
analysis of the code might be useful, which means that query expressions of the EDSL are
functioning as simple AST nodes (potentially carrying reified type information as well),
which can be analyzed and translated to, say, SQL by a separate compiler, also provided by
the EDSL library.

• The existence of a type-delimited layer is desirable because this allows the implementor of
the EDSL to offload type checking to the compiler for the host language. Performing type
checking correctly and efficiently, while also making sure to exactly match the semantics of
the host language, would require an effort proportional to that of re-implementing the type
checker of the host language, this seems like another inevitable property.

• However, extensive type-level metaprogramming is usually considered unclear, difficult to
follow, or unwieldy for syntactic reasons. Thus, a quote-delimited, higher-level macro layer
shall be applied on top of the type-delimited AST expressions in order to make the user
interface of the DSL more palatable.
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3 RESULTS
3.1 Complexity of Baseline SQLQueries
All of the aforementioned metrics have been applied to the SQL reference implementation. The
results are shown in table 3, while pairwise Pearson correlations between each unique pair of
metrics are given in table 4.
Metrics occupy a highly variable dynamic range. For instance, token entropy tends to fall roughly
between 2 and 4, while Halstead effort easily reaches into the 10,000s. Since different metrics cannot
be directly compared, and we are more interested in comparing the values of the same metric
applied to different queries, we decided to make the final numeric values easier to compare and
plot by normalizing them to the unit interval. This was done by translating and scaling them in
such a way that for any given metric, its global minimum across all queries and databases is 0, and
similarly, its global maximum is 1. Such affine transformations are permitted because they do not
affect the correlation between any given pair of metrics.
The correlation between each pair of metrics is generally high. It is notable that 25 out of the 45
possible correlations exceed 0.95, meaning that such pairs of metrics are basically affine transforms
of one another, containing essentially the same information with respect to the difficulty of queries.
There are, however, two important exceptions: one of our own metrics, the token-based Shannon
entropy, and Halstead’s measure of difficulty. In fact, the correlation between token entropy and any
other metric never reaches 0.9, suggesting that this metric of ours assesses the complexity somewhat
differently from other constructs in the literature. Low correlations can not be attributed merely
to randomness of the entropy metric, since we observe that its value does follow the perceived
difficulty of the queries well – for example, it is highest for query #11, avg_daily_price. . . , and
lowest for query #1, continents.

Table 3. Various complexity measures of the SQL reference implementation.
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# Tokens 11.00 21.00 30.00 39.00 47.00 56.00 59.00 60.00 86.00 99.00 203.00
Entropy 2.40 2.76 2.61 2.88 2.95 3.01 3.23 2.97 3.05 3.15 3.39
# Nodes 7.00 13.00 13.00 16.00 20.00 25.00 29.00 26.00 49.00 45.00 113.00
Weighted 16.00 25.00 25.00 27.00 34.00 40.00 50.00 43.00 81.00 72.00 157.00
H. Vocab. 9.00 13.00 14.00 16.00 20.00 21.00 23.00 22.00 23.00 32.00 48.00
H. Length 9.00 16.00 16.00 19.00 23.00 29.00 35.00 31.00 54.00 51.00 114.00
H. Est. Len. 19.61 35.16 39.51 48.00 66.58 71.55 81.32 77.30 81.07 130.29 223.07
H. Volume 28.53 59.21 60.92 76.00 99.40 127.38 158.32 138.24 244.27 255.00 636.69
H. Difficulty 2.50 5.25 5.33 5.50 7.33 6.38 7.31 4.86 14.73 7.33 19.19
H. Effort 71.32 310.84 324.89 418.00 728.97 812.03 1156.99 671.46 3597.47 1870.00 12220.26
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Table 4. Pairwise Pearson correlation between complexity metrics.
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Entropy 0.806
Number of AST Nodes 0.991 0.762
Weighted # of AST Nodes 0.988 0.776 0.997
Halstead Vocabulary 0.983 0.864 0.955 0.953
Halstead Length 0.993 0.787 0.999 0.999 0.963
Halstead Estimated Length 0.987 0.830 0.965 0.960 0.997 0.969
Halstead Volume 0.993 0.765 0.999 0.994 0.963 0.997 0.974
Halstead Difficulty 0.893 0.717 0.924 0.935 0.825 0.923 0.825 0.906
Halstead Effort 0.947 0.645 0.976 0.963 0.885 0.964 0.907 0.973 0.915

This seems reasonable in the light of the intuitive meaning of these measures. Most complexity
metrics are influenced by the length of the source code, but entropy and Halstead difficulty focus
on the variation in its constituents (tokens, operators, or operands) instead. Concretely, entropy
is highest on a uniform distribution, when every token in the string occurs with equal frequency.
It thus picks up many, unique or rare tokens such as keywords, and suppresses highly repetitive
symbols such as parentheses or common literals like 0. Likewise, Halstead difficulty is directly
proportional to the number of unique operators. Of course, both of these metrics are still somewhat
affected by the length of the code, but much less than e.g. weighted AST node count or Halstead
program length.

3.2 Complexity across DSLs and Metrics
Accordingly, it is important to point out queries that different metrics rank differently, so as to
observe the specific properties of each metric. When aggregating metrics from multiple databases
and query DSLs, it becomes possible to infer patterns and trends along three different dimensions:

(1) The typical complexity of a given query, aggregated acrossmetrics and database technologies.
That is, we observe which queries are usually assigned a higher complexity by the majority
of metrics, considering all tested database engines and ORMs.

(2) The typical complexity of a given database or ORM DSL. This is the complement of the
previous point, that is, we observe which database technologies and languages tend to result
in higher complexity values, according to all metrics and queries.

(3) Finally, we can also check how well each metric matches our subjective professional experi-
ence as well as more objective, quantitative expectations based on the nature of queries
and databases. That is, we correlate metric-based ranks and complexity values with each
other, or with other a priori assumptions, either over queries or databases (or both). We
may thus find metrics with new, interesting properties, as well as more accurate, useful,
and realistic measures of complexity. Relying on the subjective, personal experience of
human programmers is deemed adequate, since it was demonstrated in [26] that opinions
of professional programmers regarding the level of complexity of code tend to agree with
each other to a high degree.

Our analysis is primarily concerned with issues (2) and (3) above, since the data for (1), the relative
complexity of queries, is a given — the example code was intentionally constructed in such a way
that queries vary from short to long, from simple to complicated. In addition, arguments (2) and
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(3) are intrinsically interrelated: the goodness of metrics can only be judged based on knowledge
or expectations about the behavior of databases and ORMs, as well as the feature set and level of
sophistication of their respective DSLs.
In this spirit, we first quantitatively prove that different databases, ORMS, and DSLs impose clearly
different amounts of churn upon the programmer, as reported by various metrics. In figure 3,
Halstead effort for each query and technology is plotted. It is very apparent that the complexity of
Core Data queries almost always dominates, followed by Entity Framework except in two cases. By
far, the simplest queries are those written in SQL or MongoDB, without exception. Furthermore, in
the case of relatively more complicated queries, complexity of MongoDB dominates that of SQL,
while in the most trivial cases, they are basically on par.

Fig. 3. Halstead Effort across databases, ORMS, and queries.
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Similarly, figure 4 shows token entropy in the same arrangement. Our token entropy metric
separates technologies even more clearly, although the ranks corresponding to SQL and Mon-
goDB are reversed, except for the most trivial query. Comparing token entropy to the trivial, naïve,
and purely length-based metric of token count (figure 5) reveals that despite having predominantly
lower entropy, MongoDB queries are longer than SQL queries, with one exception, the moderately
complex query #4. This is expected because the JSON-based syntax of MongoDB queries results in
many repetitive and redundant tokens such as parentheses and commas, which inflate token count
while simultaneously reducing entropy. Meanwhile, our weighted AST node count metric (figure 6)
more accurately reflects the fact that SQL queries are generally shorter and less involved than their
MongoDB equivalents.

Fig. 4. Token Entropy metrics across databases, ORMS, and queries.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article . Publication date: July 2021.



736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Árpád Goretity and István Reguly

Fig. 5. Token Count metrics across databases, ORMS, and queries.
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Fig. 6. Weighted AST Node Count metrics across databases, ORMS, and queries.

Next, we demonstrate that the aforementioned two contributions of ours, token entropy and
weighted AST node count, provide a pair of quantities that, when considered together, capture the
complexity of typical queries better than some already-existing metrics. We also show that they
provide new and different insights compared to the existing metrics and to each other.
As previously pointed out, this requires observing the behavior of each database system as a function
of requirements that increasingly complex queries impose. Based on professional experience, we
expect that metrics of complexity, as well as perceived difficulty of the code, will increase steadily
with increasing requirements in the case of low-level databases. However, we expect an abrupt
increase in complexity metrics, and an overall sigmoidal-shaped complexity plot, when considering
queries issued against ORMs and other higher-level data abstraction layers.
The reason behind this phenomenon is fundamental. Specialized database DSLs such as SQL and
the MongoDB query language provide a diverse set of features, from the most basic to the most
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advanced, with which programmers can solve problems of varying degrees of difficulty. In contrast,
DSLs for ORMs focus on the few most frequently-used tasks, such as insertion, deletion, retrieval
of an entire record (object) by its unique ID, or traversing a single level of a to-many connection
and retrieving the associated records. However, very few ORMs provide the equivalent of features
such as recursive queries, aggregations spanning multiple relations, or windowing functions. This
means that once requirements for a query surpass the native feature set provided by the ORM,
it becomes necessary to either build the necessary language elements from other, basic building
blocks that the DSL does expose, or worse yet, to lift such more complicated parts of the query logic
from the database and into the application layer. Either of these mitigations will cause a sudden
increase in code complexity.
Once again, this plateauing behavior can only be observed in the case of token entropy. The
large change in entropy is very apparent in the complexity curve of the C#/EF Core implementation,
between queries #6 and #7. In the case of Core Data, this is not completely obvious at first glance,
due to the ordering of the queries. However, similarly to EF Core, queries for Core Data can also
be clearly classified in one of two complexity groups. Concretely, #1, #3 and #5 have a distinctly
lower complexity than the rest of the queries. Incidentally, this difference is in accordance with the
authors’ observation that Core Data is able to compile fewer kinds of queries, and consequently, it
requires adding application-level logic more frequently.
Finally, we investigate whether and why different metrics behave differently on certain queries
or pairs of queries, in order to determine what purpose each metric is suited for. A particular
case of interest is when the newly introduced metrics behave differently compared to Halstead’s
well-established formulae, and also to each other. A good example of this phenomenon is the
SQL query pair #9–10 (siblings_and_parents and northest_booked_latitude_fast). Halstead
difficulty and effort rank the former as significantly more complex, while token entropy reverses
the relationship. Again, entropy correctly identifies the higher variation in language features being
used in the latter query. This, however, does not automatically mean that it will be harder to
understand for a human than the other, recursive query. This shows that a single metric does not
generally capture all possible aspects of cognitive overhead, meaning that further development of
new metrics is still desirable.
Another scenario worth exploring is when the apparently well-performing token entropy and the
baseline token count disagree. One such example is SQL query pair #2–3 (multi_profile_users
and no_login_users). Another pair is #7–8 (top_n_booked. . . and northest_booked_latitude_slow),
among which the former is slightly shorter but yields higher entropy. This is in accordance with
the observation that they both perform a single aggregation over a multi-way join, however, the
former contains three additional language elements: a subquery, a WHERE restriction, and a LIMIT
clause. Therefore, in this case, token entropy correctly identifies the cognitively heavier query.
It is also worth noting that Halstead difficulty concurs with these findings. That is an important
confirmatory result, because Halstead difficulty is also a measure of feature diversity (as opposed
to a measure of length).
A last, important observation is that Halstead’s “effort” metric works best with longer, non-trivial
pieces of code. The longest and most complicated query, #11, produces almost pairwise identical
values of Halstead effort for the SQL and MongoDB implementations, and for the Entity and
Core Data implementations, respectively. Meanwhile, the value radically differs between ORMs
and stand-alone databases, being substantially higher in the case of ORMs. This agrees with the
difference between perceived difficulty of these two classes of data management systems.
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4 CONCLUSIONS
Based on our analysis, it is possible to draw conclusions regarding both the applied metrics as well
as as database and ORM systems.

4.1 Suitability and Fitness of Metrics
It is evident that well-established metrics such as Halstead complexity are still useful in the context
of database query DSLs. In particular, Halstead effort proved useful in comparing complexity of
queries of low-level, stand-alone databases to those of ORMs. However, since they do not necessarily
account for unique properties of such hihgly declarative languages, further development of new,
domain-specific metrics remains warranted.
Our first contribution, token entropy, proved to be the generally most robust metric, insofar as it
matched real-life experience the most closely. However, it had a relatively small dynamic range
of about [2.40, 3.94]. This means that it is primarily suitable as a tool for comparative analysis
within a corpus of appropriate size. Alternatively, an effort could be made to develop an accurate
absolute scale and range for this metric, making it applicable to single queries without the need for
a baseline or a large corpus.
Our second contribution, weighted count of AST nodes, turned out to be a good measure of program
length, as it reflects the higher-level structure of each query, in contrast with raw character or
token count. Consequently, as a formatting-invariant, accurate measure of source volume, it is a
useful helper for controlling for program length, thereby catching false positives reported by token
entropy. So, the two metrics that we introduced work together in order to provide an accurate
picture of query complexity. This is desirable, because aggregating multiple metrics increases
overall accuracy even when the metrics are highly correlated [27].
In this configuration, one would inspect both token entropy and weighted AST node count. The
results can then be interpreted qualitatively in the following manner:

• High entropy and high node count means a long query which also exhibits substantial
variation in language features, therefore, it is truly and legitimately complex. For example,
query #11, the aforementioned avg_daily_price_by_user. . . , is such, independent of
the specific database software.

• Low entropy and high node count means a long but repetitive query. Depending on the
nature of and the reading or writing tedium imposed by the repetition, this may or may not
mean actual complexity. The behavior of query #6, profile_counts_by_non_google_user,
approximates this behavior when implemented in C# / EF Core. Compared to query #5, it
has more than twice the AST node count, yet its token entropy remains slightly below that
of #5.

• Low entropy and low node count means a short and sweet query. Its complexity is
legitimately low. An instance of such a query is #1, continents, when implemented in
SQLite and MongoDB.

• High entropy and low node count cannot be observed except in extreme cases, since
token entropy is bounded from above by the number of tokens: the maximal possible
entropy for a string of 𝑁 symbols is log𝑛, and this maximum is attained when all 𝑁 symbols
are distinct. Therefore, unless there are AST nodes with an unusually large number of
corresponding tokens, low node count should imply low entropy. Exceptions to this rule
should be evaluated on a case-by-case basis.
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4.2 Issues of Current Data Abstraction APIs
The added complexity of queries against ORMs is clearly visible in almost all metrics — both in
terms of length and the number of distinct language features needed for each query. This can
however be justified by the increased type safety provided by ORMs in the simpler cases, as long
as the use of such an ORM does not impose unreasonable restrictions upon the code. The line can
usually be drawn between queries that only require natively-supported features and those that
exceed this requirement, because queries in the latter category usually end up needing manual,
in-memory postprocessing. This in turn increases complexity even more, while also potentially
degrading runtime performance and needlessly inflating client-side memory consumption.
To summarize our findings, we enumerate the following, specific problems that we experienced
and inferred from the behavior of complexity metrics.

• The friction associated with strongly, statically typed ORMS and the additional layer of
abstraction between the database and the programmer is high. SQLite and MongoDB
regularly lead to simpler and shorter queries compared to EF Core and Core Data. This
complexity gap can be attributed to the feature sets of the respective DSLs: SQL and the
MongoDB operator tree are richer and more complete, offering native support for operations
such as recursion, which is hard or impossible to implement using ORMs. This in turn
requires manual reimplementation of (sometimes large) parts of the query logic, resulting in
longer programs overall. This is clearly reflected in structured and unstructured measures
of program length. The token entropy and weighted AST node count metrics are universally
higher for queries written using EF Core and Core Data, compared to their SQL counterparts.

• Relatedly, ORMs generally appear to abstract over the lowest common denominator of
various kinds of databases. This may be why they usually lack support for operations other
than just insertion, deletion, bulk retrieval, or single-table filtering based on very simple,
atomic predicates. Specific features that our example schema would have needed, and of
which the lack caused query complexity to increase:
– Aggregations across multiple relationships.
– Filtering based on arbitrarily complex conditions, which potentially refer to other

entities and/or the result of aggregation expressions.
– Hierarchical and/or recursive queries.

• Core Data does not provide an escape hatch from its own type system: it does not allow the
programmer to drop down to SQL in order to implement unsupported operations after the
fact. This is partly due to the lack of a documented, stable mapping between the high-level
schema specification and the low-level storage format. The latter is a black box, although
types do seem to map to tables. In contrast, EF Core supports writing raw SQL, although
this is restricted to top-level queries (so-called DbSets). Both frameworks allow inspection
of the machine-generated SQL, however.

• Refining the previous point, we can address the problem that ORMs today also lack the
ability to extend their own DSLs by 3rd parties in a principled manner, via specialized
and strongly-typed interfaces, instead of making the programmer write raw SQL by hand.
These extensions would ideally be safely parameterized over the type of the backing storage
engine so that, say, a recursive CTE query (which is only applicable to SQL) would not
compile unless the backing database is an RDBMS.

Another important observation concerns the surface syntax of data manipulation DSLs. As evi-
denced by the verbose description of even simple MongoDB queries, we can conclude that JSON
and BSON are raw data interchange formats, and as such, they cannot be used efficiently and
ergonomically as a query language. Queries written in JSON or BSON resemble a serialized abstract
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syntax tree more than a human-readable query. In contrast, SQL, which was designed to be an
interactive query language right from its conception, reads more naturally and results in shorter and
simpler queries. Complexity metrics confirm this observation quantitatively: while the superficially
more uniform (or rather, repetitive) syntax of MongoDB results in lower values of token entropy in
almost all cases except for the simplest query, it more than makes up for this in terms of query
length, whether tokens or AST nodes are counted.
As far as ORMs are concerned, EF Core includes a DSL based on LINQ, which is quite powerful and
convenient, at least as long as the queries remain comparatively simple. The ASTs and method calls
that LINQ expressions are translated to can break down easily, failing at runtime, if the programmer
writes a query of which the shape is not understood by the query generator of the framework.
This problem is even more pronounced in the case of Core Data and its wrapper, Core Store. While
Core Data itself produces and accepts user-defined domain types, the query API is mostly composed
of untyped or “stringly-typed” tools such as NSFetchRequest, NSPredicate, and NSExpression.
These classes accept a DSL specified as a string literal in Objective-C or Swift, therefore most
queries except for the simplest ones cannot be verified at compilation time. Meanwhile, CoreStore
attempts to create a very thin, typed layer resembling an embedded DSL by the mechanism of
the Swift programming language known as “key paths”. This, however, breaks down once multi-
table projections and aggregations are involved – for some reason, such type-safe key paths
are only composable inside Where clauses; selecting and projecting fields across multiple classes
and connections does not support chaining of typed key paths, so we need to fall back to the
dynamically-typed underlying APIs of Core Data.

5 FUTUREWORK
In order to further our understanding of query complexity, it is desirable to design new metrics or
improve upon existing ones, making them more accurate as well as more interpretable.
To that end, we shall address the shortcomings of the token entropy metric. To provide it with
a better, increased dynamic range, it would be reasonable to compute the exponential of the
entropy, 𝑒𝑆 . This would hopefully amplify differences so that they are more easily observed. In
order to attenuate the effect of repetitive, meaningless tokens, a weighted entropy metric could
be introduced, in which the partial entropy of such unwanted tokens could be weighted down or
outright zeroed.
Lastly, while the elucidation of problems in contemporary API design is a valuable contribution of
this article, a long-term engineering challenge still remains. After having identified the issues with
current ORMs and approaches to data abstraction, it would be necessary to actually design and
develop a novel data abstraction framework that solves these issues. As some of the more high-level
goals, such as simplicity of queries and type safety, seem to sometimes contradict each other, it is
not at all obvious how such a desired API could be implemented. Further detailed design work is
therefore expected to follow our investigations.
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